3.385 \(\int \frac {1}{\cos ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^2} \, dx\)

Optimal. Leaf size=57 \[ \frac {F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{3 a^2 d}+\frac {\sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x) (a \sec (c+d x)+a)^2} \]

[Out]

1/3*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))/a^2/d+1/3*sin(d*x+c)
/d/cos(d*x+c)^(3/2)/(a+a*sec(d*x+c))^2

________________________________________________________________________________________

Rubi [A]  time = 0.10, antiderivative size = 57, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.217, Rules used = {4264, 3815, 21, 3771, 2641} \[ \frac {F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{3 a^2 d}+\frac {\sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x) (a \sec (c+d x)+a)^2} \]

Antiderivative was successfully verified.

[In]

Int[1/(Cos[c + d*x]^(3/2)*(a + a*Sec[c + d*x])^2),x]

[Out]

EllipticF[(c + d*x)/2, 2]/(3*a^2*d) + Sin[c + d*x]/(3*d*Cos[c + d*x]^(3/2)*(a + a*Sec[c + d*x])^2)

Rule 21

Int[(u_.)*((a_) + (b_.)*(v_))^(m_.)*((c_) + (d_.)*(v_))^(n_.), x_Symbol] :> Dist[(b/d)^m, Int[u*(c + d*v)^(m +
 n), x], x] /; FreeQ[{a, b, c, d, n}, x] && EqQ[b*c - a*d, 0] && IntegerQ[m] && ( !IntegerQ[n] || SimplerQ[c +
 d*x, a + b*x])

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rule 3771

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 3815

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(b*d*C
ot[e + f*x]*(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n - 1))/(a*f*(2*m + 1)), x] - Dist[d/(a*b*(2*m + 1)), Int
[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^(n - 1)*(a*(n - 1) - b*(m + n)*Csc[e + f*x]), x], x] /; FreeQ[{
a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0] && LtQ[m, -1] && LtQ[1, n, 2] && (IntegersQ[2*m, 2*n] || IntegerQ[m])

Rule 4264

Int[(u_)*((c_.)*sin[(a_.) + (b_.)*(x_)])^(m_.), x_Symbol] :> Dist[(c*Csc[a + b*x])^m*(c*Sin[a + b*x])^m, Int[A
ctivateTrig[u]/(c*Csc[a + b*x])^m, x], x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSecantIntegrandQ[
u, x]

Rubi steps

\begin {align*} \int \frac {1}{\cos ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^2} \, dx &=\left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\sec ^{\frac {3}{2}}(c+d x)}{(a+a \sec (c+d x))^2} \, dx\\ &=\frac {\sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^2}+\frac {\left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\sqrt {\sec (c+d x)} \left (\frac {a}{2}+\frac {1}{2} a \sec (c+d x)\right )}{a+a \sec (c+d x)} \, dx}{3 a^2}\\ &=\frac {\sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^2}+\frac {\left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \sqrt {\sec (c+d x)} \, dx}{6 a^2}\\ &=\frac {\sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^2}+\frac {\int \frac {1}{\sqrt {\cos (c+d x)}} \, dx}{6 a^2}\\ &=\frac {F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{3 a^2 d}+\frac {\sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^2}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.24, size = 63, normalized size = 1.11 \[ \frac {4 \cos ^4\left (\frac {1}{2} (c+d x)\right ) F\left (\left .\frac {1}{2} (c+d x)\right |2\right )+\sin (c+d x) \sqrt {\cos (c+d x)}}{3 a^2 d (\cos (c+d x)+1)^2} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(Cos[c + d*x]^(3/2)*(a + a*Sec[c + d*x])^2),x]

[Out]

(4*Cos[(c + d*x)/2]^4*EllipticF[(c + d*x)/2, 2] + Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(3*a^2*d*(1 + Cos[c + d*x])
^2)

________________________________________________________________________________________

fricas [F]  time = 0.77, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {\sqrt {\cos \left (d x + c\right )}}{a^{2} \cos \left (d x + c\right )^{2} \sec \left (d x + c\right )^{2} + 2 \, a^{2} \cos \left (d x + c\right )^{2} \sec \left (d x + c\right ) + a^{2} \cos \left (d x + c\right )^{2}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/cos(d*x+c)^(3/2)/(a+a*sec(d*x+c))^2,x, algorithm="fricas")

[Out]

integral(sqrt(cos(d*x + c))/(a^2*cos(d*x + c)^2*sec(d*x + c)^2 + 2*a^2*cos(d*x + c)^2*sec(d*x + c) + a^2*cos(d
*x + c)^2), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{{\left (a \sec \left (d x + c\right ) + a\right )}^{2} \cos \left (d x + c\right )^{\frac {3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/cos(d*x+c)^(3/2)/(a+a*sec(d*x+c))^2,x, algorithm="giac")

[Out]

integrate(1/((a*sec(d*x + c) + a)^2*cos(d*x + c)^(3/2)), x)

________________________________________________________________________________________

maple [B]  time = 3.72, size = 188, normalized size = 3.30 \[ -\frac {\sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (2 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, \EllipticF \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \left (\cos ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+2 \left (\cos ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-3 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1\right )}{6 a^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{3} \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/cos(d*x+c)^(3/2)/(a+a*sec(d*x+c))^2,x)

[Out]

-1/6*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1
/2*c)^2+1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*cos(1/2*d*x+1/2*c)^3+2*cos(1/2*d*x+1/2*c)^4-3*cos(1/2*d
*x+1/2*c)^2+1)/a^2/cos(1/2*d*x+1/2*c)^3/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c
)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

maxima [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/cos(d*x+c)^(3/2)/(a+a*sec(d*x+c))^2,x, algorithm="maxima")

[Out]

Timed out

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.02 \[ \int \frac {1}{{\cos \left (c+d\,x\right )}^{3/2}\,{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^2} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(cos(c + d*x)^(3/2)*(a + a/cos(c + d*x))^2),x)

[Out]

int(1/(cos(c + d*x)^(3/2)*(a + a/cos(c + d*x))^2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \frac {\int \frac {1}{\cos ^{\frac {3}{2}}{\left (c + d x \right )} \sec ^{2}{\left (c + d x \right )} + 2 \cos ^{\frac {3}{2}}{\left (c + d x \right )} \sec {\left (c + d x \right )} + \cos ^{\frac {3}{2}}{\left (c + d x \right )}}\, dx}{a^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/cos(d*x+c)**(3/2)/(a+a*sec(d*x+c))**2,x)

[Out]

Integral(1/(cos(c + d*x)**(3/2)*sec(c + d*x)**2 + 2*cos(c + d*x)**(3/2)*sec(c + d*x) + cos(c + d*x)**(3/2)), x
)/a**2

________________________________________________________________________________________